Bitwise ORs of subarrays¶
Time: O(N); Space: O(1); medium
We have an array A of non-negative integers.
For every (contiguous) subarray B = [A[i], A[i+1], …, A[j]] (with i <= j), we take the bitwise OR of all the elements in B, obtaining a result A[i] | A[i+1] | … | A[j].
Return the number of possible results. (Results that occur more than once are only counted once in the final answer.)
Example 1:
Input: A = [0]
Output: 1
Explanation:
There is only one possible result: 0.
Example 2:
Input: A = [1,1,2]
Output: 3
Explanation:
The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2].
These yield the results 1, 1, 2, 1, 3, 3.
There are 3 unique values, so the answer is 3.
Example 3:
Input: A = [1,2,4]
Output: 6
Explanation:
The possible results are 1, 2, 3, 4, 6, and 7.
Constraints:
1 <= len(A) <= 50000
0 <= A[i] <= 10^9
[1]:
class Solution1(object):
"""
Time: O(32*N)
Space: O(1)
"""
def subarrayBitwiseORs(self, A):
"""
:type A: List[int]
:rtype: int
"""
result, curr = set(), {0}
for i in A:
curr = {i} | {i | j for j in curr}
result |= curr
return len(result)
[2]:
s = Solution1()
A = [0]
assert s.subarrayBitwiseORs(A) == 1
A = [1,1,2]
assert s.subarrayBitwiseORs(A) == 3
A = [1,2,4]
assert s.subarrayBitwiseORs(A) == 6